Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.819
Filtrar
1.
J Neuroinflammation ; 21(1): 101, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38632579

RESUMEN

BACKGROUND: Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear. METHODS: The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured. RESULTS: The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis. CONCLUSIONS: Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.


Asunto(s)
Hipertensión , Microbiota , Humanos , Ratas , Animales , Ratas Endogámicas SHR , Enfermedades Neuroinflamatorias , Hipertensión/metabolismo , Presión Sanguínea , Bulbo Raquídeo/metabolismo , Acetatos/farmacología
2.
Physiol Behav ; 280: 114564, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657747

RESUMEN

Although salivation is essential during eating behavior, little is known about the brainstem centers that directly control the salivary glands. With regard to the inferior salivatory nucleus (ISN), the site of origin of the parasympathetic preganglionic cell bodies that innervate the parotid glands, previous anatomical studies have located it within the rostrodorsal medullary reticular formation. However, to date there is no functional data that shows the secretory nature of the somas grouped in this region. To activate only the somas and rule out the activation of the efferent fibers from and the afferent fibers to the ISN, in exp. 1, NMDA neurotoxin was administered to the rostrodorsal medullary region and the secretion of saliva was recorded during the following hour. Results showed an increased secretion of parotid saliva but a total absence of submandibular-sublingual secretion. In exp. 2, results showed that the hypersecretion of parotid saliva after NMDA microinjection was completely blocked by the administration of atropine (a cholinergic blocker) but not after administration of dihydroergotamine plus propranolol (α and ß-adrenergic blockers, respectively). These findings suggest that the somata of the rostrodorsal medulla are secretory in nature, controlling parotid secretion via a cholinergic pathway. The data thus functionally supports the idea that these cells constitute the ISN.


Asunto(s)
N-Metilaspartato , Glándula Parótida , Receptores de N-Metil-D-Aspartato , Animales , Masculino , Ratas , Glándula Parótida/metabolismo , Glándula Parótida/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/farmacología , N-Metilaspartato/metabolismo , Ratas Wistar , Salivación/efectos de los fármacos , Salivación/fisiología , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/efectos de los fármacos , Saliva/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Atropina/farmacología , Propranolol/farmacología , Antagonistas Adrenérgicos beta/farmacología , Microinyecciones , Sialorrea
3.
Sci Adv ; 10(17): eadj9581, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669335

RESUMEN

The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.


Asunto(s)
Analgésicos Opioides , Locus Coeruleus , Bulbo Raquídeo , Dolor , Sustancia Gris Periacueductal , Locus Coeruleus/metabolismo , Locus Coeruleus/efectos de los fármacos , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/efectos de los fármacos , Animales , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Analgésicos Opioides/farmacología , Masculino , Neuronas Adrenérgicas/metabolismo , Neuronas Adrenérgicas/efectos de los fármacos , Ratones , Vías Nerviosas/efectos de los fármacos
4.
J Neuropathol Exp Neurol ; 83(3): 144-160, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38323418

RESUMEN

The failure of chemoreflexes, arousal, and/or autoresuscitation to asphyxia may underlie some sudden infant death syndrome (SIDS) cases. In Part I, we showed that some SIDS infants had altered 5-hydroxytryptamine (5-HT)2A/C receptor binding in medullary nuclei supporting chemoreflexes, arousal, and autoresuscitation. Here, using the same dataset, we tested the hypotheses that the prevalence of low 5-HT1A and/or 5-HT2A/C receptor binding (defined as levels below the 95% confidence interval of controls-a new approach), and the percentages of nuclei affected are greater in SIDS versus controls, and that the distribution of low binding varied with age of death. The prevalence and percentage of nuclei with low 5-HT1A and 5-HT2A/C binding in SIDS were twice that of controls. The percentage of nuclei with low 5-HT2A/C binding was greater in older SIDS infants. In >80% of older SIDS infants, low 5-HT2A/C binding characterized the hypoglossal nucleus, vagal dorsal nucleus, nucleus of solitary tract, and nuclei of the olivocerebellar subnetwork (important for blood pressure regulation). Together, our findings from SIDS infants and from animal models of serotonergic dysfunction suggest that some SIDS cases represent a serotonopathy. We present new hypotheses, yet to be tested, about how defects within serotonergic subnetworks may lead to SIDS.


Asunto(s)
Muerte Súbita del Lactante , Lactante , Animales , Humanos , Anciano , Bulbo Raquídeo/metabolismo , Serotonina/metabolismo , Receptores de Serotonina/metabolismo
5.
Sci Rep ; 14(1): 4069, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374419

RESUMEN

We investigated the participation of the nucleus of the tractus solitarius (NTS) in tonic‒clonic seizures and postictal antinociception control mediated by NMDA receptors, the role of NTS GABAergic interneurons and noradrenergic pathways from the locus coeruleus (LC) in these phenomena. The NTS-lateral nucleus reticularis paragigantocellularis (lPGi)-LC pathway was studied by evaluating neural tract tracer deposits in the lPGi. NMDA and GABAergic receptors agonists and antagonists were microinjected into the NTS, followed by pharmacologically induced seizures. The effects of LC neurotoxic lesions caused by DSP-4, followed by NTS-NMDA receptor activation, on both tonic‒clonic seizures and postictal antinociception were also investigated. The NTS is connected to lPGi neurons that send outputs to the LC. Glutamatergic vesicles were found on dendrites and perikarya of GABAergic interneurons in the NTS. Both tonic‒clonic seizures and postictal antinociception are partially dependent on glutamatergic-mediated neurotransmission in the NTS of seizing rats in addition to the integrity of the noradrenergic system since NMDA receptor blockade in the NTS and intrathecal administration of DSP-4 decrease the postictal antinociception. The GABAA receptor activation in the NTS decreases both seizure severity and postictal antinociception. These findings suggest that glutamatergic inputs to NTS-GABAergic interneurons, in addition to ascending and descending noradrenergic pathways from the LC, are critical for the control of both seizures and postictal antinociception.


Asunto(s)
Bencilaminas , Locus Coeruleus , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Locus Coeruleus/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Bulbo Raquídeo/metabolismo , Núcleo Solitario/metabolismo , Norepinefrina/metabolismo , Convulsiones/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-38147959

RESUMEN

Zymosan is a fungi-derived pathogen-associated molecular pattern. It activates the immune system and induces the reduction of feed passage rate in the gastrointestinal tract of vertebrates including birds. However, the mechanism mediating the zymosan-induced inhibition of feed passage in the gastrointestinal tract remains unknown. Since the medulla oblongata regulates the digestive function, it is plausible that the medulla oblongata is involved in the zymosan-induced inhibition of feed passage. The present study was performed to identify the genes that were affected by zymosan within the medulla oblongata of chicks (Gallus gallus) using an RNA sequencing approach. We found that mRNAs of several bioactive molecules including neuropeptide Y (NPY) were increased with an intraperitoneal (IP) injection of zymosan. The increase of mRNA expression of NPY in the medulla oblongata was also observed after the IP injection of lipopolysaccharide, derived from gram-negative bacteria. These results suggest that medullary NPY is associated with physiological changes during fungal and bacterial infection. Furthermore, we found that intracerebroventricular injection of NPY and its receptor agonists reduced the feed passage from the crop. Additionally, the injection of NPY reduced the feed passage from the proventriculus to lower digestive tract. NPY also suppressed the activity of duodenal activities of amylase and trypsin. The present study suggests that fungi- and bacteria-induced activation of the immune system may activate the NPY neurons in the medulla oblongata and thereby reduce the digestive function in chicks.


Asunto(s)
Lipopolisacáridos , Neuropéptido Y , Animales , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Lipopolisacáridos/farmacología , Zimosan/farmacología , Pollos/metabolismo , Bulbo Raquídeo/metabolismo , Tracto Gastrointestinal/metabolismo
7.
Prog Neurobiol ; 232: 102561, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142769

RESUMEN

Chronic craniofacial pain is intractable and its mechanisms remain unclarified. The rostral ventromedial medulla (RVM) plays a crucial role in descending pain facilitation and inhibition. It is unclear how the descending circuits from the RVM to spinal trigeminal nucleus (Sp5) are organized to bidirectionally modulate craniofacial nociception. We used viral tracing, in vivo optogenetics, calcium signaling recording, and chemogenetic manipulations to investigate the structure and function of RVM-Sp5 circuits. We found that most RVM neurons projecting to Sp5 were GABAergic or glutamatergic and facilitated or inhibited craniofacial nociception, respectively. Both GABAergic interneurons and glutamatergic projection neurons in Sp5 received RVM inputs: the former were antinociceptive, whereas the latter were pronociceptive. Furthermore, we demonstrated activation of both GABAergic and glutamatergic Sp5 neurons receiving RVM inputs in inflammation- or dysfunction-induced masseter hyperalgesia. Activating GABAergic Sp5 neurons or inhibiting glutamatergic Sp5 neurons that receive RVM projections reversed masseter hyperalgesia. Our study identifies specific cell types and projections of RVM-Sp5 circuits involved in facilitating or inhibiting craniofacial nociception respectively. Selective manipulation of RVM-Sp5 circuits can be used as potential treatment strategy to relieve chronic craniofacial muscle pain.


Asunto(s)
Hiperalgesia , Núcleo Espinal del Trigémino , Humanos , Hiperalgesia/metabolismo , Núcleo Espinal del Trigémino/metabolismo , Dolor , Bulbo Raquídeo/metabolismo , Neuronas GABAérgicas/metabolismo
8.
Neurosci Lett ; 818: 137568, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008350

RESUMEN

Alamandine, a peptide known to interact with Mas-related G protein-coupled receptor subtype D (MrgD), has been implicated in moderating inflammatory signals. MrgD receptors are abundantly found in pain transmission pathways, but the role of alamandine/MrgD in pain modulation has not been thoroughly explored. This study aimed to investigate the effects of alamandine (10, 40, and 100 pmol) in a rat model of allodynia induced by sciatic nerve ligation, with a specific focus on examining the involvement of MrgD receptors, NMDAR1, and serotonin transporter (SERT) in the ventrolateral periaqueductal gray (vlPAG) and rostral ventromedial medulla (RVM). Microinjection of alamandine into the vlPAG at a dose of 100 pmol and into the RVM at doses of 40 and 100 pmol resulted in a significant increase in paw withdrawal threshold (PWT). Additionally, co-administration of D-Pro7-Ang-(1-7) at 50 pmol, an MrgD receptor antagonist, effectively blocked the analgesic effects of alamandine. Immunofluorescence analysis confirmed the presence of MrgD receptors in both the vlPAG and RVM regions. Importantly, an upregulation of MrgD receptor expression was observed following allodynia induction, suggesting a potential compensatory mechanism in response to pain. Our findings support the co-localization of MrgD receptors with NMDAR1 in vlPAG neurons, suggesting their ability to initiate analgesic pathways similar to those activated by NMDA receptors in the vlPAG. Furthermore, our results underscore a significant co-localization of MrgD receptors with the SERT in the RVM, underscoring their potential impact on serotonergic neurons involved in promoting analgesic effects.


Asunto(s)
Hiperalgesia , Sustancia Gris Periacueductal , Ratas , Animales , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Sustancia Gris Periacueductal/metabolismo , Dolor/tratamiento farmacológico , Analgésicos/farmacología , Nervio Ciático/metabolismo , Bulbo Raquídeo/metabolismo
9.
Chin J Physiol ; 66(5): 326-334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929343

RESUMEN

Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder, and there is an association between it and the development of cardiovascular disease. The aim of this study was to explore whether there is a glutamatergic pathway connecting the medial habenula (MHb) with the rostral ventrolateral medulla (RVLM) that is involved in the regulation of cardiovascular function in a rat model of PTSD. Vesicular glutamate transporter 2 (VGLUT2)-positive neurons in the MHb region were retrogradely labeled with FluoroGold (FG) by the double-labeling technique of VGLUT2 immunofluorescence and FG retrograde tracing. Rats belonging to the PTSD model group were microinjected with artificial cerebrospinal fluid (ACSF) or kynurenic acid (KYN; a nonselective glutamate receptor blocker) into their RVLM. Subsequently, with electrical stimulation of MHb, the discharge frequency of the RVLM neurons, heart rate, and blood pressure were found to be significantly increased after microinjection of ACSF using an in vivo multichannel synchronous recording technology; however, this effect was inhibited by injection of KYN. The expression of N-methyl-D-aspartic acid (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits was significantly increased in RVLM of PTSD model rats analyzed by the Western blotting technique. These findings suggest that there may be a glutamatergic pathway connection between MHb and RVLM and that this pathway may be involved in the regulation of cardiovascular function in the PTSD model rats, by acting on NMDA and AMPA receptors in the RVLM.


Asunto(s)
Habénula , Trastornos por Estrés Postraumático , Humanos , Ratas , Animales , Trastornos por Estrés Postraumático/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Habénula/metabolismo , Bulbo Raquídeo/metabolismo , Presión Sanguínea , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología
10.
Nat Biomed Eng ; 7(11): 1350-1373, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37414976

RESUMEN

The mechanisms by which physical exercise benefits brain functions are not fully understood. Here, we show that vertically oscillating head motions mimicking mechanical accelerations experienced during fast walking, light jogging or treadmill running at a moderate velocity reduce the blood pressure of rats and human adults with hypertension. In hypertensive rats, shear stresses of less than 1 Pa resulting from interstitial-fluid flow induced by such passive head motions reduced the expression of the angiotensin II type-1 receptor in astrocytes in the rostral ventrolateral medulla, and the resulting antihypertensive effects were abrogated by hydrogel introduction that inhibited interstitial-fluid movement in the medulla. Our findings suggest that oscillatory mechanical interventions could be used to elicit antihypertensive effects.


Asunto(s)
Antihipertensivos , Hipertensión , Adulto , Ratas , Humanos , Animales , Presión Sanguínea , Antihipertensivos/metabolismo , Antihipertensivos/farmacología , Hipertensión/terapia , Hipertensión/metabolismo , Bulbo Raquídeo/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 325(3): R229-R237, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37424401

RESUMEN

To investigate the role of glial cells in the regulation of glucoprivic responses in rats, a chemogenetic approach was used to activate astrocytes neighboring catecholamine (CA) neurons in the ventromedial medulla (VLM) where A1 and C1 CA cell groups overlap (A1/C1). Previous results indicate that activation of CA neurons in this region is necessary and sufficient for feeding and corticosterone release in response to glucoprivation. However, it is not known whether astrocyte neighbors of CA neurons contribute to glucoregulatory responses. Hence, we made nanoinjections of AAV5-GFAP-hM3D(Gq)-mCherry to selectively transfect astrocytes in the A1/C1 region with the excitatory designer receptor exclusively activated by designer drugs (DREADDs), hM3D(Gq). After allowing time for DREADD expression, we evaluated the rats for increased food intake and corticosterone release in response to low systemic doses of the antiglycolytic agent, 2-deoxy-d-glucose (2DG), alone and in combination with the hM3D(Gq) activator clozapine-n-oxide (CNO). We found that DREADD-transfected rats ate significantly more food when 2DG and CNO were coadministered than when either 2DG or CNO was injected alone. We also found that CNO significantly enhanced 2DG-induced FOS expression in the A1/C1 CA neurons, and that corticosterone release also was enhanced when CNO and 2DG were administered together. Importantly, CNO-induced activation of astrocytes in the absence of 2DG did not trigger food intake or corticosterone release. Our results indicate that during glucoprivation, activation of VLM astrocytes cells markedly increases the sensitivity or responsiveness of neighboring A1/C1 CA neurons to glucose deficit, suggesting a potentially important role for VLM astrocytes in glucoregulation.


Asunto(s)
Astrocitos , Corticosterona , Ratas , Animales , Astrocitos/metabolismo , Desoxiglucosa/farmacología , Ratas Sprague-Dawley , Bulbo Raquídeo/metabolismo , Glucosa/metabolismo , Catecolaminas/metabolismo
12.
J Neuroinflammation ; 20(1): 137, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264405

RESUMEN

BACKGROUND: Neuroinflammation in the rostral ventrolateral medulla (RVLM) has been associated with the pathogenesis of stress-induced hypertension (SIH). Neuronal mitochondrial dysfunction is involved in many pathological and physiological processes. However, the impact of neuroinflammation on neuronal mitochondrial homeostasis and the involved signaling pathway in the RVLM during SIH are largely unknown. METHODS: The morphology and phenotype of microglia and the neuronal mitochondrial injury in vivo were analyzed by immunofluorescence, Western blot, RT-qPCR, transmission electron microscopy, and kit detection. The underlying mechanisms of microglia-derived tumor necrosis factor-α (TNF-α) on neuronal mitochondrial function were investigated through in vitro and in vivo experiments such as immunofluorescence and Western blot. The effect of TNF-α on blood pressure (BP) regulation was determined in vivo via intra-RVLM microinjection of TNF-α receptor antagonist R7050. RESULTS: The results demonstrated that BP, heart rate (HR), renal sympathetic nerve activity (RSNA), plasma norepinephrine (NE), and electroencephalogram (EEG) power increased in SIH rats. Furthermore, the branching complexity of microglia in the RVLM of SIH rats decreased and polarized into M1 phenotype, accompanied by upregulation of TNF-α. Increased neuronal mitochondria injury was observed in the RVLM of SIH rats. Mechanistically, Sirtuin 3 (Sirt3) and p-AMPK expression were markedly downregulated in both SIH rats and TNF-α-treated N2a cells. AMPK activator A769662 upregulated AMPK-Sirt3 signaling pathway and consequently reversed TNF-α-induced mitochondrial dysfunction. Microinjection of TNF-α receptor antagonist R7050 into the RVLM of SIH rats significantly inhibited the biological activities of TNF-α, increased p-AMPK and Sirt3 levels, and alleviated neuronal mitochondrial injury, thereby reducing c-FOS expression, RSNA, plasma NE, and BP. CONCLUSIONS: This study revealed that microglia-derived TNF-α in the RVLM impairs neuronal mitochondrial function in SIH possibly through inhibiting the AMPK-Sirt3 pathway. Therefore, microglia-derived TNF-α in the RVLM may be a possible therapeutic target for the intervention of SIH.


Asunto(s)
Hipertensión , Sirtuina 3 , Ratas , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedades Neuroinflamatorias , Microglía/metabolismo , Hipertensión/metabolismo , Presión Sanguínea , Mitocondrias/patología , Bulbo Raquídeo/metabolismo
13.
Neurobiol Dis ; 183: 106173, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37247681

RESUMEN

Neuronal hyperexcitation in the rostral ventrolateral medulla (RVLM) drives heightened sympathetic nerve activity and contributes to the etiology of stress-induced hypertension (SIH). Maintenance of mitochondrial functions is central to neuronal homeostasis. PDZD8, an endoplasmic reticulum (ER) transmembrane protein, tethers ER to mitochondria. However, the mechanisms of PDZD8-mediated ER-mitochondria associations regulating neuronal mitochondrial functions and thereby mediating blood pressure (BP) in the RVLM of SIH were largely unknown. SIH rats were subjected to intermittent electric foot shocks plus noise for 2 h twice daily for 15 consecutive days. The underlying mechanisms of PDZD8 were investigated through in vitro experiments by using small interfering RNA and through in vivo experiments, such as intra-RVLM microinjection and Western blot analysis. The function of PDZD8 on BP regulation in the RVLM was determined in vivo via the intra-RVLM microinjection of adeno-associated virus (AAV)2-r-Pdzd8. We found that the c-Fos-positive RVLM tyrosine hydroxylase (TH) neurons, renal sympathetic nerve activity (RSNA), plasma norepinephrine (NE) level, BP, and heart rate (HR) were elevated in SIH rats. ER-mitochondria associations in RVLM neurons were significantly reduced in SIH rats. PDZD8 was mainly expressed in RVLM neurons, and mRNA and protein levels were markedly decreased in SIH rats. In N2a cells, PDZD8 knockdown disrupted ER-mitochondria associations and mitochondrial structure, decreased mitochondrial membrane potential (MMP) and respiratory metabolism, enhanced ROS levels, and reduced catalase (CAT) activity. These effects suggested that PDZD8 dysregulation induced mitochondrial malfunction. By contrast, PDZD8 upregulation in the RVLM of SIH rats could rescue neuronal mitochondrial function, thereby suppressing c-Fos expression in TH neurons and decreasing RSNA, plasma NE, BP, and HR. Our results indicated that the dysregulation of PDZD8-mediated ER-mitochondria associations led to the loss of the activity homeostasis of RVLM neurons by disrupting mitochondrial functions, thereby participating in the regulation of SIH pathology.


Asunto(s)
Hipertensión , Ratas , Animales , Presión Sanguínea , Hipertensión/etiología , Hipertensión/metabolismo , Mitocondrias/metabolismo , Antioxidantes/farmacología , Neuronas/metabolismo , Homeostasis , Retículo Endoplásmico/metabolismo , Bulbo Raquídeo/metabolismo
14.
Sci Rep ; 13(1): 6550, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085567

RESUMEN

High fat diet (HFD) promotes cardiovascular disease and blunted cardiac vagal regulation. Temporal onset of loss of cardiac vagal control and its underlying mechanism are presently unclear. We tested our hypothesis that reduced central vagal regulation occurs early after HFD and contributes to poor cardiac regulation using cardiovascular testing paired with pharmacology in mice, molecular biology, and a novel bi-transgenic mouse line. Results show HFD, compared to normal fat diet (NFD), significantly blunted cardio/pulmonary chemoreflex bradycardic responses after 15 days, extending as far as tested (> 30 days). HFD produced resting tachycardia by day 3, reflected significant loss of parasympathetic tone. No differences in bradycardic responses to graded electrical stimulation of the distal cut end of the cervical vagus indicated diet-induced differences in vagal activity were centrally mediated. In nucleus ambiguus (NA), surface expression of δ-subunit containing type A gamma-aminobutyric acid receptors (GABAA(δ)R) increased at day 15 of HFD. Novel mice lacking δ-subunit expression in vagal motor neurons (ChAT-δnull) failed to exhibit blunted reflex bradycardia or resting tachycardia after two weeks of HFD. Thus, reduced parasympathetic output contributes to early HFD-induced HR dysregulation, likely through increased GABAA(δ)Rs. Results underscore need for research on mechanisms of early onset increases in GABAA(δ)R expression and parasympathetic dysfunction after HFD.


Asunto(s)
Dieta Alta en Grasa , Bulbo Raquídeo , Ratones , Animales , Modelos Animales de Enfermedad , Dieta Alta en Grasa/efectos adversos , Bulbo Raquídeo/metabolismo , Nervio Vago/fisiología , Bradicardia , Ácido gamma-Aminobutírico/metabolismo
15.
Nat Neurosci ; 26(4): 594-605, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894654

RESUMEN

Supraspinal brain regions modify nociceptive signals in response to various stressors including stimuli that elevate pain thresholds. The medulla oblongata has previously been implicated in this type of pain control, but the neurons and molecular circuits involved have remained elusive. Here we identify catecholaminergic neurons in the caudal ventrolateral medulla that are activated by noxious stimuli in mice. Upon activation, these neurons produce bilateral feed-forward inhibition that attenuates nociceptive responses through a pathway involving the locus coeruleus and norepinephrine in the spinal cord. This pathway is sufficient to attenuate injury-induced heat allodynia and is required for counter-stimulus induced analgesia to noxious heat. Our findings define a component of the pain modulatory system that regulates nociceptive responses.


Asunto(s)
Nociceptores , Dolor , Ratones , Animales , Nociceptores/fisiología , Dolor/metabolismo , Bulbo Raquídeo/metabolismo , Manejo del Dolor , Neuronas/fisiología , Médula Espinal/fisiología
16.
CNS Neurosci Ther ; 29(7): 1830-1847, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36852438

RESUMEN

AIMS: The rostral ventrolateral medulla (RVLM) is an essential vasomotor center responsible for regulating the development of stress-induced hypertension (SIH). Long non-coding RNAs (lncRNAs) play critical roles in various physiopathology processes, but existing research on the functions of RVLM lncRNAs on SIH has been lacking. In this study, we investigated the roles of RVLM lncRNAs in SIH. METHODS: Genome-wide lncRNA profiles in RVLM were determined by RNA sequencing in a SIH rat model established using electric foot shocks plus noises. The hypotensive effect of lncRNA INPP5F and the underlying mechanisms of lncRNA INPP5F on SIH were explored through in vivo and in vitro experiments, such as intra-RVLM microinjection and immunofluorescence. RESULTS: We discovered 10,179 lncRNA transcripts, among which the lncRNA INPP5F expression level was significantly decreased in SIH rats. Overexpression of lncRNA INPP5F in RVLM dramatically reduced the blood pressure, sympathetic nerve activity, and neuronal excitability of SIH rats. LncRNA INPP5F overexpression markedly increased Cttn expression and reduced neural apoptosis by activating the PI3K-AKT pathway, and its inhibition had opposite effects. Mechanistically, lncRNA INPP5F acted as a sponge of miR-335, which further regulated the Cttn expression. CONCLUSION: LncRNA INPP5F was a key factor that inhibited SIH progression, and the identified lncRNA INPP5F/miR-335/Cttn/PI3K-AKT/apoptosis axis represented one of the possible mechanisms. LncRNA INPP5F could serve as a therapeutic target for SIH.


Asunto(s)
Hipertensión , MicroARNs , ARN Largo no Codificante , Ratas , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Bulbo Raquídeo/metabolismo , Presión Sanguínea , MicroARNs/genética , MicroARNs/metabolismo , Sistema Nervioso Simpático/metabolismo , Cortactina/metabolismo , Cortactina/farmacología
17.
J Neurosci ; 42(41): 7744-7756, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36414010

RESUMEN

The midbrain periaqueductal gray (PAG) plays a central role in pain modulation via descending pathways. Opioids and cannabinoids are thought to activate these descending pathways by relieving intrinsic GABAergic inhibition of PAG neurons which project to the rostroventromedial medulla (RVM), a process known as disinhibition. However, the PAG also receives descending extrinsic GABAergic inputs from the central nucleus of the amygdala (CeA) which are thought to inhibit PAG GABAergic interneurons. It remains unclear how opioids and cannabinoids act at these different synapses to control descending analgesic pathways. We used optogenetics, tract tracing and electrophysiology to identify the circuitry underlying opioid and cannabinoid actions within the PAG of male and female rats. It was observed that both RVM-projection and nonprojection PAG neurons received intrinsic-PAG and extrinsic-CeA synaptic inputs, which were predominantly GABAergic. Opioids acted via presynaptic µ-receptors to suppress both intrinsic and extrinsic GABAergic inputs onto all PAG neurons, although this inhibition was greater in RVM-projection neurons. By contrast, cannabinoids acted via presynaptic CB1 receptors to exclusively suppress the direct descending GABAergic input from the CeA onto RVM-projection PAG neurons. These findings indicate the CeA controls PAG output neurons which project to the RVM via parallel direct and indirect GABAergic pathways. While µ-opioids indiscriminately inhibit GABAergic inputs onto all PAG neurons, cannabinoids selectively inhibit a direct extrinsic GABAergic input from the amygdala onto PAG projection neurons. These differential actions of opioids and cannabinoids provide a flexible system to gate the descending control of analgesia from the PAG.SIGNIFICANCE STATEMENT The disinhibition hypothesis of analgesia states that opioids activate the midbrain periaqueductal gray (PAG) descending pathway by relieving the tonic inhibition of projection neurons from GABAergic interneurons. However, the PAG also receives extrinsic GABAergic inputs and is the locus of action of cannabinoid analgesics. Here, we show the relative sensitivity of GABAergic synapses to opioids and cannabinoids within the PAG depends on both the origin of presynaptic inputs and their postsynaptic targets. While opioids indiscriminately inhibit all GABAergic inputs onto all PAG neurons, cannabinoids selectively inhibit a direct extrinsic GABAergic input from the amygdala onto PAG descending projection neurons. These differential actions of opioids and cannabinoids provide a flexible system to gate PAG descending outputs.


Asunto(s)
Cannabinoides , Sustancia Gris Periacueductal , Masculino , Femenino , Ratas , Animales , Sustancia Gris Periacueductal/metabolismo , Analgésicos Opioides/farmacología , Analgésicos Opioides/metabolismo , Cannabinoides/farmacología , Cannabinoides/metabolismo , Dolor/metabolismo , Bulbo Raquídeo/metabolismo , Analgésicos
18.
Am J Physiol Regul Integr Comp Physiol ; 323(6): R861-R874, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36222883

RESUMEN

Hypertension is characterized by sympathetic hyperactivity, which is related to the overexcitation of the presympathetic neurons in the rostral ventrolateral medulla (RVLM). Nitric oxide (NO) has been reported to be a vital neuromodulator involved in central cardiovascular regulation. However, the mechanism of interleukin-enhanced binding factor 3 (ILF3) participating in blood pressure (BP) regulation is still unclear. Therefore, this study aims to clarify the role of ILF3 within the rostral ventrolateral medulla (RVLM) in regulating NO in hypertension. It was found that the expression level of ILF3 was significantly increased in the RVLM of spontaneously hypertensive rats (SHR) compared with Wistar-Kyoto (WKY) rats through microarray gene expression analysis, Western blot, and immunofluorescence. Overexpression of ILF3 by injecting constructed adenovirus into the RVLM increased the BP and renal sympathetic nerve activity (RSNA) of the WKY rats, significantly decreasing NO production and neuronal nitric oxide synthase (nNOS) expression. Knockdown of ILF3 in the RVLM of SHR significantly reduced BP but increased NO production and the neuronal nitric oxide synthase (nNOS) expression. Furthermore, it was found that the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway was activated via Western blotting in the RVLM after overexpression of ILF3, whereas it was attenuated after knockdown of ILF3 in SHR. In addition, inhibition of PI3K by intracisternal infusion of the PI-103 attenuated the increase in Akt phosphorylation and decrease in nNOS expression and NO production caused by overexpressing ILF3, which ultimately blunted high BP induced by overexpressing ILF3. Taken together, this current study suggests that ILF3 participates in high BP via reducing NO production in the RVLM through PI3K/Akt pathway.


Asunto(s)
Hipertensión , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Ratas Endogámicas WKY , Fosfatidilinositol 3-Quinasa/metabolismo , Bulbo Raquídeo/metabolismo , Presión Sanguínea , Ratas Endogámicas SHR , Interleucinas/metabolismo , Proteínas del Factor Nuclear 90/metabolismo
19.
J Chem Neuroanat ; 124: 102123, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35738454

RESUMEN

Preclinical and clinical studies have reported sex differences in pain and analgesia. These differences may be linked to anatomical structures of the central nervous system pain modulatory circuitry, and/or hormonal milieu. The midbrain periaqueductal gray (PAG) is a critical brain region for descending inhibition of pain. The PAG projects to the rostral ventromedial medulla (RVM), which projects bilaterally to the spinal cord to inhibit pain. In addition to pain, this descending circuit (or pathway) can be engaged by endogenous opioids (i.e., endorphins) or exogenous opioids (i.e., morphine), and we have previously reported sex differences in the activation of this circuit during pain and analgesia. Forebrain structures, including the amygdala, project to and engage the PAG-RVM circuit during persistent inflammatory pain. However, there are limited studies in females detailing this amygdalar-PAG pathway and its involvement during persistent inflammatory pain. The objective of the present study was to delineate the neural projections from the amygdala to the PAG in male and female rats to determine if they are sexually distinct in their anatomical organization. We also examined the activation of this pathway by inflammatory pain and the co-localization of receptors for estrogen. Injection of the retrograde tracer fluorogold (FG) into the ventrolateral PAG (vlPAG) resulted in dense retrograde labeling in both the central amygdala (CeA) and medial amygdala (MeA). While the number of CeA-vlPAG neurons were comparable between the sexes, there were more MeA-vlPAG neurons in females. Inflammatory pain resulted in greater activation of the amygdala in males; however, females displayed higher Fos expression within CeA-vlPAG projection neurons. Females expressed higher ERα in the MeA and CeA and the same was true of the projection neurons. Together, these data indicate that although the MeA-vlPAG projections are denser in females, inflammatory pain does not significantly activate these projections. In contrast, inflammatory pain resulted in a greater activation of the CeA-vlPAG pathway in females. As females experience a greater number of chronic pain syndromes, the CeA-vlPAG pathway may play a facilitatory (and not inhibitory) role in pain modulation.


Asunto(s)
Sustancia Gris Periacueductal , Caracteres Sexuales , Animales , Femenino , Masculino , Bulbo Raquídeo/metabolismo , Dolor/metabolismo , Sustancia Gris Periacueductal/metabolismo , Ratas , Ratas Sprague-Dawley
20.
J Chem Neuroanat ; 122: 102104, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35561876

RESUMEN

Transient receptor potential melastatin 8 (TRPM8), a cold-mediated ion channel, is well known to be expressed in primary sensory neurons; however, limited information is currently available on the distribution of TRPM8-expressing trigeminal nerve fibers in the brainstem. The present study showed the distribution of TRPM8-expressing fibers in the pons and medulla oblongata of the TRPM8 KO mice engineered by knocking in EGFP at the frame of the start codon of TRPM8. In addition, TRPM8-expressing fibers were also observed in the brachium pontis, middle cerebellar peduncle, the sensory root of the trigeminal nerve, and spinal trigeminal tract (sp5). Furthermore, TRPM8-expressing nerve fibers surrounded the somata of HuC/D-positive neurons in the sp5. Moreover, the distribution of TRPM8-expressing fibers from rostral to caudal was visualized in sagittal sections of the mouse brain. The present results also revealed that a high number of TRPM8-expressing fibers colocalized with CTB-labeled fibers in the sp5 following an injection of CTB into the whisker compared to mice's eye and ear. These results show the distribution pathway of TRPM8-expressing fibers in the pons and medulla oblongata and possible involvement in peripheral signaling from the trigeminal nerve.


Asunto(s)
Canales Catiónicos TRPM , Animales , Bulbo Raquídeo/metabolismo , Ratones , Neuronas/metabolismo , Puente/metabolismo , Canales Catiónicos TRPM/metabolismo , Nervio Trigémino/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA